Thiazolidinediones and Cardiovascular Disease: Balancing Benefit and Harm

Sonal Singh, MD, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Yoon K. Loke, MBBS, MD, University of East Anglia, School of Medicine, Health Policy and Practice, Norwich, UK.

Cardiovascular disease is the leading cause of mortality among older adults with type II diabetes. The thiazolidinediones (rosiglitazone and pioglitazone) lower blood sugar levels among individuals with type II diabetes. The thiazolidinediones have favourable effects on surrogate markers of cardiovascular disease such as microalbuminuria, carotid intimal thickness, and blood pressure. Emerging evidence from recent randomized controlled clinical trials has confirmed both that thiazolidinediones increase the risk of heart failure, and that rosiglitazone increases the risk of myocardial infarction among those with type II diabetes. Clinicians should avoid thiazolidinediones for older individuals with type II diabetes who are at risk for cardiovascular events as the negative cardiovascular effects of the thiazolidinediones outweigh any potential benefits on surrogate markers.

Key words: thiazolidinediones, pioglitazone, rosiglitazone, heart failure, myocardial infarctions

Introduction

Cardiovascular disease is the leading cause of mortality and morbidity among persons with type II diabetes. The prevalence of coronary artery disease among individuals with type II diabetes is approximately 22%.1 A recent prospective longitudinal prevalence study showed that the prevalence of heart failure among older adults with newly diagnosed type II diabetes over a period of 10 years of follow-up was 57.6%.2 The currently available thiazolidinediones are rosiglitazone and pioglitazone. These drugs lower blood sugar levels among individuals with type II diabetes. They have been shown to favourably affect surrogate markers of cardiovascular disease such as carotid intimal thickness,3 serum C-reactive protein levels,4 blood pressure levels,5 and microalbuminuria.6 However, recent systematic reviews have alerted us to the emerging cardiovascular risks of the thiazolidinediones in randomized clinical trials.7–11

Thiazolidinediones and Heart Failure

The risk of heart failure appears to be a class effect of the thiazolidinediones. Our systematic review of three randomized controlled trials (RCTs) involving 10,731 patients showed that the thiazolidinediones doubled the risk of heart failure (odds ratio [OR] 2.1, 95% CI 1.08–4.08; p = .03) compared with controls (Table 1).8 The median duration for the onset of heart failure with the thiazolidinediones was approximately 24 weeks.8 We estimate the number needed to harm (NNH) for hospitalization for heart failure with the thiazolidinediones to be 110 per year.8 The NNH for rosiglitazone among older adults with diabetes (age 63 years without a history of heart failure) is even more unfavourable at 30 per year.9 Another systematic review of seven RCTs found a similar increase in the risk of heart failure with the thiazolidinediones (nearly 72%), without any deleterious effect on cardiovascular mortality.11

Regulatory agencies have provided information about the risk of heart failure with the thiazolidinediones but have given differing recommendations on the severity of heart failure required to restrict the use of these agents. In Europe, these agents have been contraindicated for patients with heart failure and any history of heart failure since approval.12 Health Canada have also recently updated their recommendation to warn against use in patients with any degree of heart failure.13 In the U.S., thiazolidinediones have been contraindicated for persons with NYHA class III and IV heart failure, recently highlighted by a prominent black box warning (added to the labeling of drugs by the Food and Drug Administration [FDA] when serious adverse reactions or special problems occur, particularly those that may lead to death or serious injury).14 The impact of these restrictions on physician prescribing practices is uncertain as these agents continue to be prescribed for patients with heart failure.

We determined that the thiazolidinediones could cause heart failure even among prediabetic individuals without a history of heart failure, among individuals not assigned to insulin, and among a younger population.8 Three of the rosiglitazone trials applied stringent criteria to exclude participants with heart failure; despite this careful patient selection process, the meta-analysis still showed a significant increase in the number of patients with heart failure due to rosiglitazone use. There are similar excess rates of heart failure for pioglitazone in the...
large PROactive (PROspective pioglitA-
zone Clinical Trial In macroVascular
Events) study, (RR 1.43, 95% CI 1.20–1.70;
p<0.001) even though persons with
NYHA class III or IV heart failure were
excluded from the study. Careful screen-
ing (based on history and clinical exami-
nation) by physicians will not be suf-
cient to prevent new heart failure
cases arising as a result of thiazolidine-
dione therapy. Regulatory authorities
also recommend close monitoring of car-
diac signs and symptoms, which may be
likely to pose a considerable additional
burden to physicians and patients.

The mechanism of heart failure due
to the thiazolidinediones is via fluid
retention (Figure 1). Both these agents act
on renal peroxisome proliferator-activat-
ed receptor gamma (PPAR gamma) and
lead to increased sodium retention, fluid
retention, and consequent heart failure
among persons with diabetes. Thiazo-
lidinedione-induced heart failure
requires immediate discontinuation of
the drug and may not respond to loop
diuretics such as furosemide. Clinicians
should consider the use of potassium-
sparing agents such as spironolactone or
amiloride.

Table 1: Thiazolidinediones and the Risk of Heart Failure: A Teleo-analysis

<table>
<thead>
<tr>
<th>Studies (n)</th>
<th>Intervention</th>
<th>Baseline Event Rate</th>
<th>Number Needed to Harm per Year with Thiazolidinediones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 RCTs involving 10,371 patients</td>
<td>Thiazolidinedione vs. placebo</td>
<td>7.3% vs. 3.9%</td>
<td>110 per year</td>
</tr>
</tbody>
</table>

On the other hand, pioglitazone does
not increase the risk of MI. The claim of
any cardiovascular benefit of pioglitaza-
one in the systematic review by Lincoff
et al. on an artificial composite of MI,
stroke, and death will require corrobo-
ration from adequately powered long-
term trials as pioglitazone failed to meet
its primary end point in the only large
clinical trial measuring cardiovascular
outcomes—PROactive (Hazard Ratio 0.90, 95% CI 0.80–1.02; p=1.00). The
differences in ischemic risk may be
explained by the thiazolidinediones’
varying effects on lipid levels—pioglita-
zone lowers low-density lipoprotein cho-
lesterol while rosiglitazone raises it.

Accumulating evidence from long-
term trials has demonstrated the negative
effects of the thiazolidinediones on car-
diovascular disease among individuals
with type II diabetes. The risk of heart
failure is a class effect of the thiazolidine-
diones, whereas the ischemic cardiovas-
cular risk is confined to rosiglitazone. The
public health impact of the use of the thi-
azolidinediones among older adults with
type II diabetes is substantial. Accord-
ing to an FDA review, more than 205,000
cardiovascular ischemic events may have
occurred among rosiglitazone users from
its approval in 1999 until 2006. Their
benefit on a surrogate measure such as
HbA1C should be balanced against their
complex actions elsewhere in the body.

Table 2: Long-term Rosiglitazone Use- and the Risk of Cardiovascular Events (Myocardial Infarction and Heart Failure)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Intervention</th>
<th>Baseline Event Rate</th>
<th>Number Needed to Harm per Year with Rosiglitazone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial Infarction</td>
<td>4 RCTs involving 14,291 patients</td>
<td>Rosiglitazone vs. controls</td>
<td>1.46% vs 1.05%</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>4 RCTs involving 14,291 patients</td>
<td>Rosiglitazone vs. controls</td>
<td>1.59% vs 0.78%</td>
</tr>
</tbody>
</table>
Figure 1:
Thiazolidinedione Use, Fluid Retention, and Congestive Heart Failure

Thiazolidinediones (TZDs) act by binding to PPARs (peroxisome proliferator-activated receptors), a group of receptor molecules inside the cell nucleus, specifically PPARγ. The normal ligands for these receptors are free fatty acids and eicosanoids. When activated, the receptor migrates to the DNA, activating transcription of a number of specific genes. By activating PPARγ, insulin resistance is decreased, adipocyte differentiation is modified, VEGF-induced angiogenesis is inhibited, and adiponectin levels rise.
Thiazolidinediones and Cardiovascular Disease

Key Points

- Cardiovascular disease is the leading cause of morbidity and mortality among older adults with type II diabetes.
- Rosiglitazone increases the risk of myocardial infarction by nearly 40% and doubles the risk of heart failure, without an increase in cardiovascular mortality.
- Pioglitazone increases the risk of heart failure without an increase in the risk of ischemic events, possibly explained by differences in lipid effects.

Suggestions for Thiazolidinedione Use in Older Diabetic Adults:

Newly diagnosed older diabetic patients should not be started on a thiazolidinedione.

Both the thiazolidinediones should be avoided for older adults with type II diabetes who have heart failure or are at risk for heart failure.

Rosiglitazone should be avoided in older type II diabetic patients at risk for cardiovascular disease.

Older type II diabetic patients with poor glycemic control should be switched from a thiazolidinedione to a nonthiazolidinedione regimen.

Strong consideration should be given to switching older adults with type II diabetes well controlled on a thiazolidinedione to a nonthiazolidinedione regimen.

In a case where a clinician has exhausted all other therapeutic options, pioglitazone may be the preferred thiazolidinedione.

including a doubling of the risk of bone fractures among women, which may negate any potential gain.

A recent systematic review highlighted that older agents (metformin and sulfonylureas) are less expensive and more effective for the treatment of type II diabetes and do not carry the negative cardiovascular risks of the thiazolidinediones. In another recent systematic review, metformin was the only antidiabetic agent not associated with harm among individuals with heart failure and diabetes.22

Health Canada issued a safety update in November 2007 based on a review of these studies. According to the update, rosiglitazone is not approved for use alone, or with a sulfonylurea drug, except when metformin is contraindicated. Rosiglitazone is also not indicated in combination with Insulin or as triple therapy for patients with type II diabetes mellitus. Rosiglitazone is not indicated for patients with heart failure or a history of heart failure.

A recent American Diabetes Association/European Association for the Study of Diabetes update considers that thiazolidinediones should still be a possible second step option in the algorithm for management of patients with type II diabetes who are not well controlled on diet/lifestyle/metformin, as an alternative to insulin (most effective) and sulfonylureas (cheapest). However, “the weight of the new information should prompt clinicians to consider more carefully whether to use this class of drugs.” They also urge “greater caution in using thiazolidinediones in people with or at risk for congestive heart failure.”

A recent case-control study highlights the specific dangers of thiazolidinedione use in older people (age above 66 years) with diabetes. This health care database study from Ontario, Canada found that current thiazolidinedione therapy was associated with a significantly increased risk of heart failure (RR, 1.60, 95% CI, 1.21–2.10; \(p<0.001 \)), acute myocardial infarction (RR 1.40, 95% CI 1.05–1.86; \(p=0.02 \)) and death (RR 1.29, 95% CI, 1.02–1.62; \(p=0.03 \)) compared with oral hypoglycemic agents. The increased risk with thiazolidinedione use seemed to be mainly with rosiglitazone.

Recommendations

Based on the available evidence, we recommend that newly diagnosed patients with type II diabetes not be assigned a thiazolidinedione. Individuals with type II diabetes who have heart failure or a history of heart failure should not be prescribed thiazolidinediones and should be switched to alternative regimens. Rosiglitazone should be avoided in persons with cardiovascular disease (angina, MI), and these patients should be switched to alternative regimens. Current patients with poor glycemic control taking the thiazolidinediones should be switched immediately to alternative agents such as metformin and insulin. Even for those who are well controlled on the thiazolidinediones, strong consideration should be given to alternative regimens that do not include a thiazolidinedione. In the case where a clinician has exhausted other therapeutic options, pioglitazone may be the preferred thiazolidinedione.

Conclusions

The thiazolidinediones carry significant cardiovascular risks (heart failure, MI) and are associated with negative effects elsewhere in the body (bone fractures). In the absence of any meaningful benefits to patients, thiazolidinediones should be avoided for older adults with diabetes who are at risk of cardiovascular events (heart failure, heart attack). Ongoing and future trials in diabetes should measure patient-oriented outcomes rather than surrogates.

No competing financial interests declared.

References

Thiazolidinediones and Cardiovascular Disease

